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Summary. Empirical results routinely demonstrate that 
the reduced Additive Main effects and Multiplicative In- 
teraction (AMMI) model achieves better predictive accu- 
racy for yield trials than does the full treatment means 
model. It may seem mysterious that treatment means are 
not the most accurate estimates, but rather that the 
AMMI model is often more accurate than its data. The 
statistical explanation involves the Stein effect, whereby 
a small sacrifice in bias can produce a large gain in accu- 
racy. The corresponding agricultural explanation is 
somewhat complex, beginning with a yield trial's design 
and ending with its research purposes and applications. 
In essence, AMMI selectively recovers pattern related to 
the treatment design in its model, while selectively rele- 
gating noise related to the experimental design in its dis- 
carded residual. For estimating the yield of a particular 
genotype in a particular environment, the AMMI model 
uses the entire yield trial, rather than only the several 
replications of this particular trial, as in the treatment 
means model. This use of more information is the source 
of AMMI's  gain in accuracy. 
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tive Interaction (AMMI) model, which produces ad- 
justed means because of a discarded residual. By splitting 
the yield data at random, using part for model construc- 
tion and part for model validation, various models can be 
compared in terms of their predictive success by a statis- 
tic such as the root mean square difference between 
model estimates (predictions) and validation observa- 
tions. Routinely empirical results demonstrate that the 
reduced AMMI model achieves better predictive accu- 
racy than does the full treatment means model (Gauch 
1988; Gauch and Zobel 1988, 1989). 

It may seem mysterious that treatment means are not 
the best, most predictively accurate estimates. Neverthe- 
less, the reasons underlying AMMI's  predictive success 
are well understood, although they are somewhat com- 
plex, because the explanation necessarily touches upon 
numerous concepts and issues from the yield experi- 
ment's design forward. Also, a meaningful explanation 
must clarify agricultural as well as statistical issues. This 
paper attempts to provide a clear theoretical explanation 
for the documented empirical fact that AMMI yield esti- 
mates are often more predictively accurate than treat- 
ment means. Often the AMMI model is more accurate 
than its data. 

Introduction 

Yield estimates can be based upon the full treatment 
means or cell means model, which simply uses the aver- 
ages over replications, or alternatively upon a reduced 
model, such as the Additive Main effects and Multiplica- 
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Yield trial design 

A designed experiment, such as a yield trial, has two 
components: treatment design and experimental design. 
Given R replications for T treatments, there are R T  ex- 
perimental units - here referred to as yield plots - for 
which yield is observed. The treatment design concerns 
the choice of imposed treatments of agricultural interest 
- here a two-way factorial design concerning yield for G 
genotypes grown in E environments (site-year combina- 
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tions), for a total of  T = GE treatments. On the other 
hand, the experimental design concerns the allocation of 
experimental units (yield plots) to the treatments, ordi- 
narily involving randomization and replication of some 
sort. It serves to validate the subsequent application of an 
appropriate statistical analysis for the potential purpose 
of drawing significant inferences from the data (and of 
making rational decisions). 

This fundamental two-fold design - treatment design 
and experimental design - is reflected in the first, most 
fundamental partition in an analysis of variance 
(ANOVA) table. The source for the "Total" variation 
with R T - 1  degrees of freedom (d f )  after customarily 
removing the grand mean is first partitioned into "Treat- 
ments" with T -  1 df and "Error" with ( R -  1) T df  The 
source for treatments reflects variation due to the treat- 
ment design, whereas the source for error reflects varia- 
tion due to the experimental design (replication). 

If the treatment design has some structure (such as the 
two-way factorial here of genotypes by environments), or 
if certain treatment comparisons have special interest, 
then the T - 1  df for treatments may be further parti- 
tioned by an appropriate statistical model. Likewise, if 
the experimental design has some special structure (such 
as a randomized complete block or a lattice design, rather 
than merely the completely randomized design), then the 
( R -  1) Tdf  for error may be further partitioned (such as 
B -  1 d f  for "Blocks" and the remainder for "Pure error" 
with the randomized complete block design). 

The error m e a n  square 

For the moment, however, let us focus on the simplest 
possible case involving no further partitioning: the treat- 
ments are merely modelled by their treatment means (or 
"cell means"), and likewise the error is not partitioned 
(presumably reflecting a completely randomized design). 

Five kinds of quantities are of interest. (1) Yoe, are the 
individual yield observations for genotype 9, environ- 
ment e, and replicate r of replications 1 to R used for 
constructing the model. (2) Re is the empirical treatment 
mean, namely, the averages over replications 1 to R, for 
genotype g in environment e. (3) #0e is the true or popu- 
lation mean for genotype 9 in environment e. It is, of 
course, a theoretical, unobservable quantity. (4) ~0e is the 
yield estimate calculated by a statistical model, based 
upon some or all of the GER observations Y0er allocated 
for model construction. Of course, several different statis- 
tical models may be used, producing several such esti- 
mates. (5) Yoel are the individual yield observations for 
genotype 9, environment e, and future or new replicate f 
of replications I to F, used for validating the model. The 
total number of replications, for both modelling and val- 
idating purposes, is R + E 

Note that quantities 1, 2, and 5 are empirical and 
observed, whereas quantity 3 is theoretical and unobserv- 
able. Quantity 4 involves a combination of observation 
and theory in that the model uses the observations Y~er, 
but then statistical calculations lead to an estimate Yoe 
which, in general, does not equal either the observations 
Y0er or their unadjusted mean Y0e" That is, both the data 
and the model (theory) are required in order to calculate 

Incidentally, the R modelling replications are some- 
times called the "old" data and the F validation replica- 
tions the "new" data, reflecting the time sequence of 
model construction followed by model validation. These 
terms do not necessarily require or imply that the new 
data are collected literally in the future, that is, not until 
after model construction has been completed. In the pres- 
ent context of yield trials, the modelling and validation 
data are collected concurrently, which is necessary given 
the impossibility of exactly duplicating the weather and 
other conditions from year to year. Hence, the modelling 
and validation data, or "old" and "new" data, are distin- 
guished here in the present application solely by their 
allocation to different purposes, ordinarily on the basis of 
a randomization. 

Since all T treatments involving the yields Y0e are to 
be analyzed in the same way here, the remainder of this 
section and its mathematical notation may be simplified 
by dropping the subscripts g and e and focusing on a 
single empirical mean, here denoted 2, and its R individ- 
ual replicates xr and true mean/~. 

The R replicates are understood to constitute a ran- 
dom and finite sample from a larger population of possi- 
ble replicates or observations. Hence, their variance is 
estimated by the error mean square (EMS), calculated 
using the equation for samples, namely: 

EMS = o- s (x r -2 )  2 
r 

Note that the corresponding equation for populations 
(exhaustive samples), denoted ^2 ap, instead divides by R, 
but is not used here. 

The corresponding variance for a sample mean based 
on R replicates is estimated by a~̂ 2 = #ff/R, and the stan- 
dard error of this mean is the square root of this quantity. 
Homogeneity of variances between treatments is com- 
monly assumed. Accordingly, a single pooled estimate of 
the variance exploits the entire data set and applies to all 
GE treatments. 

The critical comment may now be offered that this 
^2 implements a distinctively estimation of the variance as 

predictive interest in the accuracy of the yield observa- 
tions, in that it provides an unbiased estimate of the mean 
square difference between an individual empirical obser- 
vation x~ and its true mean #. Although this point is 
amply clear in statistics texts (such as Snedecor and 
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Cochran 1980), nevertheless confusion is common.  This 
confusion probably  arises from the subtlety that  the esti- 
mat ion of 0 -2 necessarily involves empirical quantities, 
namely, differences of the sort x . - 2 ,  whereas the mean- 
ing or definition of o -2 involves a theoretical quantity, 
namely, the (unobserved) true mean # and differences of 
the sort x . - # ,  The relationship between the true and 
empirical means, # and 2, as regards the EMS, is as 
follows: 

is estimated by EMS =[.~j (x.-.)']/(R-l). 
Note that division by R - I ,  rather than R, in the 

equation for estimating EMS corrects for sample bias, 
and causes the variance estimate to reflect differences 
from the true populat ion mean # rather than the sample 
mean 2. 

Also note that this equation for ~r 2 on the left side of 
the above equation line is not a recipe for calculating cr 2, 
since it contains the unobservable parameter/~, and fur- 
thermore ~r 2 is itself a parameter.  Rather, it is an informal 
tool for explaining the meaning of a 2, approaching this 
parameter 's  value as the number  of replications R goes to 
infinity. 

Likewise, for the empirical mean ~, 

cry2 is estimated by E M S / R =  ( x , -2 )  a [R(R-  1)]. 

Again note that al though these calculations necessar- 
ily involve empirical quantities, nevertheless EMS/R esti- 
mates a theoretical quantity or parameter  a~, namely, the 
mean square difference between an empirical sample 
mean ~ and its theoretical and true, but unobserved, 
populat ion mean #. 

Error and noise 

A statistical model serves to interrelate empirical, observ- 
able quantities (here given Roman symbols) and theoret- 
ical, unobservable quantities or parameters  (given Greek 
symbols). The simplest model is the "Treatment Means" 
or "Cell Means" model: 

Yger = ~ge -I- ~ger 

where Yge. is the yield observation for genotype g, envi- 
ronment  e, and replicate r, #0~ is the true mean, and %.. 
is the error or deviation from the true mean. The treat- 
ment means model is a full model since it estimates all T 
means with T df  (or equivalently T - 1  deviations from 
the grand mean with T -  1 df  plus the grand mean with 
i d f) ,  where T =  GE presuming that there are no missing 
data. Similarly, the simplest yield estimates, using this 

t reatment means model, are the averages over replica- 
tions: 

Here error is defined as discrepancies between indi- 
vidual observations Yoe, and their true mean #0e, that  is, 
as %e,. This is the conventional definition. 

However,  ordinarily greater interest focuses on the 
yield estimates Poe than on the individual replicates Y0e,; 
so it is useful to also have terminology pertaining to these 
estimates. Accordingly, here noise is defined as discrepan- 
cies between yield estimates ~ and their true mean #0~, 
denoting noise as vo~: 

roe = ]doe -1- Voe �9 

Both error and noise involve comparisons with the 
same true mean #0~" The salient distinction is that  error 
involves discrepancies between individual replicates and 
their true mean, whereas noise involves discrepancies be- 
tween yield estimates and their true mean. The existence 
of error means that an individual replicate is not perfect, 
whereas noise means that a yield estimate (such as an 
average over several replicates) is also not perfect. 

The treatment means model offers the average over 
replicates ~e for a yield estimate ~'0~, but there also exist 
countless alternative models, and hence countless alter- 
native estimates. Therefore, the concept of noise is inher- 
ently relative to both  a particular data  set and a particu- 
lar model. This makes sense because the noise roe, or the 
discrepancy between Yo~ and ~t0e , is caused both by sam- 
pling variations and by model inadequacies. 

An analogous remark applies to error because an 
experimental design, such as a randomized incomplete 
block design, leads to adjusted empirical means ~'e, 
which differ from the usual raw or unadjusted mean Y~, 
and hence give an adjusted error E0~ . instead of the orig- 
inal error %e~' Therefore, the concept of error is also 
inherently relative to both a particular data  set and a 
particular model. 

Note  in particular that  for a given yield trial data  set, 
the errors (and noise) could be relatively large with one 
statistical model, but relatively small with another  model. 
This raises the issue, to be addressed momentari ly,  of 
empirical and theoretical considerations bearing upon 
model choice. 

The above definitions of error and noise are purely 
statistical. However,  they apply to a designed experiment 
serving agricultural purposes, and therefore it is fitting 
next to also seek an agricultural interpretation of these 
concepts. Hopefully, the statistical and agricultural di- 
mensions of these concepts will correspond to some us- 
able degree. 

The fundamental  practical problem here is that yield 
data are noisy: "data  =pa t t e rn  + noise" (Freeman 1973). 
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We desire to know the population or true means #~,, that 
is, the true pattern; however, the yield estimates Yoe and 
sample means Yoe fall short because of noise. 

Postdiction concerns a model's accuracy in fitting its 
own data, whereas prediction concerns a model's accura- 
cy in fitting new or independent data (Gauch 1988; 
Gauch and Zobel 1988). When the data are split, the 
modelling data can be regarded as "dataa =pa t te rn+  
noise1" and the validation data as "data2=pat tern+ 
noise 2.'' Postdiction makes no distinction between pat- 
tern and noise, simply rewarding recovery of the data's 
total sum of squares (SS). But prediction distinguishes 
pattern from noise, rewarding recovery of pattern (since 
it is constant and predictively useful across data subsets), 
but penalizing recovery of noise (since it is idiosyncratic 
and predictively deleterious across data subsets). "The 
pattern is stable, agronomically meaningful, and has pre- 
dictive value, whereas the noise is idiosyncratic, uninter- 
preted, and of no predictive value" (Gauch and Zobel 
1988). Additional discussion of the difference between 
postdiction and prediction follows momentarily. 

Insofar as a yield trial successfully allocates agricul- 
turally significant, interpretable, and repeatable factors in 
its treatment design, while relegating agriculturally in- 
significant, uninterpreted, and unrepeatable factors to its 
experimental design, to that extent statistical patterns 
will correspond with agricultural patterns and statistical 
noise will correspond with agricultural noise. 

In practice, there is never a completely clean separa- 
tion between treatment and experimental designs. Im- 
posed treatments may affect unrecognized factors, such 
as a manure containing some needed microelement or, 
alternatively, some deleterious bacterium. The control of 
factors may not be complete or exact, as when variations 
in residual nitrogen confound the effects of imposed fertil- 
izer applications. Some presumably "random" variation 
may actually be understood agronomically, such as a 
well-known, excessively sandy corner in a test field, or 
recognized spots with serious soil compaction problems. 
Also complex interactions among controlled or uncon- 
trolled factors or both may elude the agronomist's grasp. 

Nevertheless, the well-established history of success- 
ful yield trial research demonstrates that some measure of 
separation between treatment and experimental designs 
is accomplished routinely. In other words, treatments are 
significant enough, and controlled well enough, to obtain 
useful agricultural information from yield trial experi- 
ments, despite uncontrolled factors and despite not per- 
fectly equivalent replicates. 

Insofar as a controlled yield trial experiment suc- 
ceeds, there exists, from its design, the prospect that a 
good statistical model will recover pattern with agricul- 
tural significance and utility, while relegating noise to a 
discarded residual. 

Prediction and postdiction 

A yield estimate Re can be used for two purposes: post- 
diction of an individual observation Y0e,, where the sub- 
script r indexes this old observation already used for 
model construction and for estimation of Yoe; and predic- 
tion of other or future observations Y0el' where the sub- 
script f indexes this new or future observation to be used 
for model validation but not used for model construction 
or for estimation of gge (Gauch and Zobel 1989). Obvi- 
ously prediction is harder than postdiction. On average, 
the new observations Yoel will lie farther from the old 
sample mean gge than will the old observations Yoe,, since 
this sample mean is based upon the old observations Yoer 
for replicates 1 to R and, hence, is correlated with these 
old observations. Accordingly, the prediction mean 
square difference (estimated as the mean squared differ- 
ence between Yoel and ?ge values) is larger than the post- 
diction mean square difference (estimated as the mean 
squared difference between Yoe, and Poe values). 

The Stein effect 

If a recommendation predicts some particular yield or, 
equivalently, the actually best variety gives this yield, but 
regrettably the farmer's actual yield is smaller by an 
amount x, then the farmer suffers a yield reduction of x 
relative to the expected or the best possible yield. This 
yield reduction can be associated through a loss function 
l(x) with some practical loss, such as a farmer's income 
loss resulting from an inaccurate yield estimate leading to 
a suboptimal variety choice. 

Statisticians are concerned with partitioning accuracy 
into precision and bias. Consider a random variable Y,, its 
population mean #, and expected value based upon some 
specified model E (Y). Then accuracy (Y-g )  equals preci- 
sion (Y-E(Y))  plus bias (E(Y)-#).  That a model be 
unbiased is desirable. 

Regardless of the form of the loss function, however, 
note that it is simply a function of the yield reduction x. 
For example, a yield reduction of 300 kg/ha has the same 
economic impact for a farmer, regardless of whether a 
statistician would attribute this inaccuracy to impreci- 
sion or bias or to some mixture of imprecision and bias. 
Hence, inaccuracy is to be minimized. 

Now statistical situations can arise in which a small 
increase in bias allows for a large decrease in inaccuracy. 
Thus, a biased estimator may be more accurate and give 
a smaller (better) loss than does an unbiased estimator 
and, hence, be superior for agricultural and economical 
purposes. This statistical phenomenon is called the Stein 
effect [first reported in Stein (1955), but also see James 
and Stein (1960), a general account by Berger (1985), and 
interesting remarks in Howson and Urbach (1989)]. 
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The estimates Yg~ of the treatment means full model 
are unbiased (Snedecor and Cochran 1980:44). By COn - 
trast, the AMMI reduced model produces yield estimates 
~ ,  which differ from those of the full model, and further- 
more there is no biological or agricultural reason to ex- 
pect the AMMI model to fit a yield trial exactly. Accord- 
ingly, the AMMI model is guaranteed to have some bias, 
suffering some measure of model misspecification. 

Therefore, were unbiasedness taken as a critical re- 
quirement in model choice, then the full model would 
automatically surpass any reduced model, including 
AMMI. But because of the Stein effect, a requirement for 
unbiasedness can contradict the above commitment to 
minimization of inaccuracy and, hence, loss. If both con- 
siderations (minimal bias and minimal inaccuracy) can- 
not be met simultaneously, then the minimization of inac- 
curacy (and, hence, minimization of loss) must prevail 
over unbiasedness, because loss is the criterion that re- 
lates best to agricultural economic considerations. By 
comparison, whether a given inaccuracy results from im- 
precision or bias or both is rather academic. 

Hence, when the Stein effect causes a reduced model 
to gain more in accuracy than it loses in bias, the reduced 
model may outperform the full model overall, as judged 
by a criterion of, e.g., minimizing the squared loss. This 
situation is impossible for infinite sample sizes, since in 
this case the treatment means would already be perfect 
and hence could not be improved upon. However, the 
Stein effect occurs commonly with small sample sizes, 
such as the two to ten replications characterizing yield 
trial experiments. 

An estimator that exhibits the Stein effect shrinks its 
estimates toward the means, or shrinks deviations from 
the means toward zero. This is exactly what happens 
when an AMMI model discards the residual SS or varia- 
tion - the remaining model variance is smaller than the 
original data variance by exactly this difference of the 
discarded residual variance. 

Agronomists and breeders often feel that the best esti- 
mate of a yield is necessarily the data, that is, the average 
over replications for a given yield trial. Accordingly, a 
model can be worse than its data, not recovering quite all 
of its variance, but a model cannot be better. Insofar as 
a model differs from its data, according to this conven- 
tional perspective, it is worse than the data. 

But the Stein effect says exactly the opposite - a re- 
duced model can be better than the full model. Since the 
individual replicates have error, their treatment means 
have noise. That is, if a 2 is greater than zero, then 2_  O'yc-- 
cr2/R is also greater than zero for finite R. A postdictive 
outlook does not distinguish pattern from noise, and 
hence automatically considers the full model most (post- 
dictively) accurate. However, a predictive outlook seeks 
to recover the pattern in the data but to relegate the noise 

to a discarded residual, and hence may judge a reduced 
model most (predictively) accurate. 

The accuracy of AMMI 

In general statistical terms, AMMI estimates can be more 
predictively accurate than their data (treatment means) 
because of the Stein effect (as in Gauch J988 and Gauch 
and Zobel 1988). Nevertheless, it may be helpful to sup- 
plement this general, somewhat abstract, explanation 
with a more specific explanation concerning the AMMI 
model and its application to yield trials. 

So, how does an AMMI reduced model produce more 
predictively accurate estimates than does the treatment 
means full model that constitutes AMMI's  data? The 
explanation has two main components. 

First, the treatment means model and the AMMI 
model represent two different statistical perspectives 
(Gauch and Zobel 1988). Consider a yield trial with G 
genotypes in E environments with R replications, and 
now focus upon one particular treatment, genotype g in 
environment e, and the estimation of its yield Y0e- What 
data are relevant for this estimation? 

The treatment means modelling perspective considers 
relevant only the R yield replicates for genotype g in 
environment e, and uses their average as the estimate. So 
of the GER observations, R are relevant and (GE- 1) R 
are irrelevant. 

By constrast, the AMMI modelling perspective con- 
siders the entire yield trial to constitute the relevant data. 
Of GER observations, all GER are relevant. Every datum 
in the entire yield trial bears upon and can alter this 
estimation of each ~0e" 

AMMI estimates can be more predictively accurate 
than treatment means, simply because AMMI considers 
and uses more data. This AMMI perspective is not ex- 
plicitly or formally Bayesian, but it has a decidedly 
Bayesian flavor. In estimating ~ ,  the R direct observa- 
tions have the Bayesian flavor of likelihood information, 
while the (GE--1)R indirect observations have the 
Bayesian flavor of prior information. In any case, more 
data makes AMMI better. 

Because the AMMI model misspecifies the true model 
to some degree, this use of indirect information intro- 
duces some bias. However, in many cases the problem 
with variance outweighs this problem with bias, particu- 
larly given a small number of replications and a sizeable 
EMS. Consequently the Stein effect occurs. But AMMI's  
improvement does not come from nowhere or from sheer 
computation, but rather from using more data in making 
each yield estimate ~'ge. 

Second, although the treatment MS combines a vari- 
ance component for error (or noise) and a variance com- 
ponent for treatments (or pattern), the AMMI model 
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selectively recovers pattern while its discarded residual 
selectively recovers noise (Gauch 1988). In brief, the ex- 
planation for this selectivity is that a relatively small 
number of principal agricultural causal factors affects 
numerous yields in correlated or coordinated major pat- 
terns. These factors write a low-dimensional story into 
the high-dimensional genotypes by environments multi- 
variate data matrix. AMMI models this high-dimension- 
al data structure by a parsimonious, low-dimensional 
summary in terms of several vectors (namely, genotype 
and environment means plus scores for one to a few 
interaction principal components analysis IPCA axes; 
Gauch 1988). The data contain G x E numbers, but the 
model contains only several (usually 2 or 3) times G + E 
numbers. The low-dimensional AMMI model recovers 
the low-dimensional pattern originally produced by the 
principal agricultural causal factors. 

By contrast, the uncontrolled and essentially random 
yield fluctuations that cause replicate observations to be 
unequal involve idiosyncratic, high-dimensional struc- 
ture. The low-dimensional AMMI model simply cannot 
possibly capture inherently high-dimensional informa- 
tion effectively; therefore, it appears instead in the 
model's residual, which is high dimensional. 

Insofar as a yield experiment's treatment design suc- 
cessfully imposes agriculturally important factors, where- 
as its experimental design randomizes agriculturally 
unimportant factors, the agricultural distinction between 
pattern and noise will coincide with its statistical counter- 
part. Consequently, the EMS can be used to provide 
rough guidance on how much of the treatment MS repre- 
sents agricultural pattern worth modelling. 

For example, consider Table 1 in Gauch and Zobel 
(1990). For this soybean yield trial, the error MS is 
107,884, while the treatment MS is 2,286,664 with 384 df 
But the treatment MS includes the error variance compo- 
nent, so the treatment MS may be regarded as being 
composed of 107,884 noise and 2,178,780 pattern, or 
4.7% noise and 95.3% pattern. Hence an ideal, predic- 
tively accurate model will not recover 100% of the treat- 
ment SS, but rather 95.3% or 836,651,520, and more 
specifically that variance associated with pattern (while 
relegating the noise to a discarded residual, presumably 
with a SS of about 41,427,456). Incidentally, were the 
treatment effects negligible, then the treatment MS would 
be expected to nearly equal the error MS, giving rise to 
an F ratio of nearly 1, which indicates a nonsignificant 
treatment effect. 

Now this 4.7% noise may seem rather insignificant. 
However, even just a few percent noise is consequential, 
because it can alter genotype rankings within an environ- 
ment considerably (Gauch and Zobel 1989). The error 
MS is 107,884, so the root error MS is 328, in this case in 
units of kg/ha. For comparison, the grand mean is 
2,606 kg/ha. Most treatments have four replicates, so the 

standard error of the treatment mean is 328/4 o.5 or 
164 kg/ha, giving a coefficient of variation for the treat- 
ment means of 164/2,606 or 6.3% (which is fairly good for 
a yield trial). Therefore, were AMM1 to discard a residual 
containing this noise, the resulting adjusted treatment 
means would differ from the unadjusted raw treatment 
means by about 164 kg/ha in terms of their root mean 
square difference, or by about 6.3% of the grand mean. 

Another way to understand the significance of AMMI 
adjustments is to equate their impact to an equivalent 
number of free observations (Gauch and Zobel 1988). 
The same gain in predictive accuracy from the AMMI 
model could also be achieved by providing the treatment 
means model with a larger number of replications or 
observations. The adjusted means from AMMI often 
move the yield estimates toward the true means, to an 
extent equivalent to the far costlier alternative of supply- 
ing the treatment means model with hundreds or thou- 
sands of additional yield observations. 

Discussion 

After splitting the data for validation purposes, the data 
may then be recombined in order to produce a final, most 
accurate model based upon all of the data (Gauch and 
Zobel 1988). This final model is ordinarily more predic- 
tively accurate than its predecessor modelling only part 
of the data. However, this final model's predictive accura- 
cy cannot be measured empirically because no indepen- 
dent validation observations exist at this stage. Neverthe- 
less, some estimate or extrapolation is desired for this 
final accuracy, even if it must be only approximate or 
even cautiously conservative. 

Several possibilities for this extrapolation merit fur- 
ther investigation. Statistical theory might help, including 
comparing validation procedures other than simple data 
splitting. Empirical studies of yield trials conducted with 
a few more replications than customary could character- 
ize accuracy trends throughout the usual numbers of 
replications. 

One suggestion has been to assume that the statistical 
gain factor obtained by data splitting approximates the 
factor for the complete data (Gauch and Zobel 1988). 
However, subsequent research has indicated that this rule 
may be too generous. As AMMI models are based upon 
more and more replications, the supplied (input) treat- 
ment means become better and better (less noisy), and 
consequently the opportunity diminishes for AMMI to 
improve the yield estimates. 

Until this extrapolation is better understood, the 
most conservative approach is to measure the predictive 
accuracy for the penultimate model, using only one repli- 
cation for validation and the remainder for modelling, 
and to claim that the final model using the complete data 
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is somewhat more accurate without specifying exactly 
how much. 

Another possible extrapolation is less conservative, 
but probably not excessive in most cases. Consider a yield 
trial with four replications, having a penultimate AMMI 
model using three replications (and reserving one replica- 
tion for validation) and a final model using the complete 
four replications. Assume that the AMMI statistical effi- 
ciency factor for the penultimate model with three repli- 
cations is 2.5 (as in Gauch and Zobel 1989), meaning that 
AMMI's  predictive accuracy is equivalent to 2.5 x 3 = 7.5 
replications (analyzed by the treatment means model). 
Then a moderately conservative extrapolation for the 
final model is to add one replication for this final incre- 
ment in supplied data, so the final accuracy is estimated 
to be equivalent to 7.5 + 1.0= 8.5 replications. 

AMMI and blocking provide fundamentally different 
approaches for controlling error, addressing orthogonal 
df. Thus both can be used. Two objectives are involved in 
error control: detecting significant effects and adjusting 
estimates. 

Blocking addresses the error d f, partitioning it into, 
e.g., blocks and pure error. The objective is to obtain a 
smaller EMS, thereby increasing F ratios and signifi- 
cance. By contrast, AMMI addresses the treatment df 
and, more specifically, the GE interaction df in order to 
partition it into interaction principal components with 
larger MS (than GE), thereby increasing F ratios and 
significance. Since AMMI and blocking address orthogo- 
hal d f, both can be used to increase F ratios. Increasing 
a source MS and decreasing an error MS both have the 
desired consequence of increasing an F ratio. 

Furthermore, some experimental designs, such as 
randomized incomplete block designs, derive block ad- 
justments and thereby produce adjusted estimates for the 
individual observations (replicates) and treatment means. 
Blocking and AMMI may be combined by supplying 
these adjusted treatment means to AMMI rather than the 
unadjusted raw means, and likewise validating the ad- 
justed observations. This use of two orthogonal error- 
control strategies, addressing both the treatment df and 
the error df (i.e., both the treatment and experimental 
designs), may in some instances achieve remarkable 
statistical efficiencies. 

Although AMMI and blocking are ordinarily com- 
plementary error-control strategies, the situation is differ- 
ent for an unreplicated trial. Bradley et al. (1988) docu- 
ment historical trends over the most recent few decades 
toward trials with fewer replications, and even no replica- 
tion. Of course, blocking is impossible without replica- 
tion, but AMMI is still applicable. 

More generally, with rather few replications, AMMI 
will frequently provide more error control than blocking, 
because AMMI improvements are greater for noisier 
data and blocking has relatively little information to ex- 

ploit. By contrast, with rather numerous replications, 
blocking will sometimes provide more error control than 
AMMI, because AMMI improvements are smaller for 
better data and blocking has relatively abundant infor- 
mation to exploit. Hence, recent trends toward fewer 
replications and more test environments imply decreas- 
ing benefits from blocking but increasing benefits from 
AMMI. 

Advantages associated with the full treatment means 
model, including unbiasedness and 100% variance ac- 
counted for, presume a postdictive context. By contrast, 
advantages associated with the reduced AMMI model, 
including predictive accuracy and statistical gains in effi- 
ciency, presume a predictive context. But the real purpose 
of an agricultural experiment is not merely to know what 
happened on experimental plots in the past, but rather to 
improve the reliability of variety recommendations or to 
increase the genetic gains from superior selections 
(Gauch 1988; Gauch and Zobel 1988, 1989). Hence, the 
agricultural purposes of yield trial research are thorough-  
ly predictive. This predictive context motivates and justi- 
fies the advantages of the reduced AMMI model. 

On balance, the postdictive context is not wrong or 
useless, although it is secondary to the predictive context. 
F tests and other postdictive analyses are useful, although 
their limitations and approximations are best understood 
from a basically predictive outlook. At any rate, it must 
be clearly understood that the choice between a postdic- 
tive or predictive outlook, or between a primarily post- 
dictive or primarily predictive outlook, turns upon agri- 
cultural rather than statistical considerations. Off-the- 
shelf statistical methods provide the concepts and calcu- 
lations for either the postdictive or predictive analysis, so 
there is no problem here. However, the choice of research 
questions and purposes is fundamentally an agricultural 
matter. Mere mathematics and statistics are essentially 
neutral regarding a postdictive or predictive stance, but 
agricultural questions and applications clearly indicate a 
primarily predictive stance. 

Finally, it may be reiterated that other papers present 
the empirical basis for claiming statistical efficiency gains 
from the AMMI reduced model for a variety of crops and 
situations. This paper's objectives are limited to supple- 
menting these empirical results with a clearer theoretical 
basis. 
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